Acetyl-Histone H3 (Lys36) Antibody - CD BioSciences

service-banner

Acetyl-Histone H3 (Lys36) Antibody

Acetyl-Histone H3 (Lys36) Antibody

SPA-05111

Size Price
25 µg Online Inquiry
100 µg Online Inquiry
More Options Online Inquiry
Target Information
Target Name Histone H3
Gene Abbr. H3-3A
Gene ID 3020
Full Name H3.3 histone A
Alias H3-3B, H3.3A, H3F3, H3F3A
Introduction The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination. Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, 36 and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair. Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins. In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues. Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation. Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression.Histone H3 Lys36 acetylation is mediated by the GCN5 histone acetyltransferase and is conserved in multiple species, from yeast to mammals. Acetyl-histone H3 Lys36 is localized predominantly to the promoters of active RNA polymerase II-transcribed genes and overlaps with other acetylation marks associated with transcriptional activation, such as acetyl-histone H3 Lys9 and Lys14. The pattern of acetyl-histone H3 Lys36 is inversely related to that of tri-methyl-histone H3 Lys36, which is found in the gene body of actively transcribed genes.
Product Details
Host Rabbit
Clonality Monoclonal
Clone No. D9T5Q
Immunogen Synthetic peptide corresponding to residues surrounding acetylated Lys36 of human histone H3 protein.
Source/Purification Antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding acetylated Lys36 of human histone H3 protein.
Usage
Application WB, IP, IF, ChIP, FC
Dilutions Western Blot (1:1000); Immunoprecipitation (1:200)
MW(KDa) 17
Reactivity Human, Mouse, Rat, Monkey
Sensitivity Endogenous
Specificity It recognizes endogenous levels of histone H3 protein only when acetylated at Lys36. This antibody does not cross react with other known acetylated lysine residues on histones H3, H4, H2A and H2B.
Storage & Handling
Storage Buffer Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol and less than 0.02% sodium azide.
Preservative Less than 0.02% Sodium Azide
Storage Temp. Store at -20 °C.
Handling Do not aliquot the antibody.

For research use only. Not intended for any clinical use. No products from CD BioSciences may be resold, modified for resale or used to manufacture commercial products without prior written approval from CD BioSciences.